# Linear Elasticity¶

Authors: Jack Hale, (Univ. Luxembourg), Laura De Lorenzis (ETH Zürich) and Corrado Maurini (corrado.maurini@sorbonne-universite.fr)

This notebook serves as a tutorial to solve a problem of linear elasticity using DOLFINx.

You can find a tutorial and useful resources for DOLFINx at the following links

We consider an elastic slab $$\Omega$$ with a straight crack $$\Gamma$$ subject to a mode-I loading by an applied traction force $$f$$, see figure.

Using the symmetry, we will consider only half of the domain in the computation. We solve the problem of linear elasticity with the finite element method, implemented using DOLFINx.

FEniCSX is advanced library that allows for efficient parallel computation. For the sake of simplicity, we assume here to work on a single processor and will not use MPI-related commands. Using DOLFINx with MPI will be covered in the afternoon session.

import sys
sys.path.append("../python")

# Import required libraries
import matplotlib.pyplot as plt
import numpy as np

import dolfinx
import ufl

from mpi4py import MPI
from petsc4py import PETSc

from utils import project
from meshes import generate_mesh_with_crack

plt.rcParams["figure.figsize"] = (40,6)


Let us generate a mesh using gmsh (http://gmsh.info/).

The function to generate the mesh is reported in the external file meshes.py. The mesh is refined around the crack tip.

Lx = 1.
Ly = .5
Lcrack = 0.3
lc =.2
dist_min = .1
dist_max = .3
mesh = generate_mesh_with_crack(Lcrack=Lcrack,
Lx=Lx,
Ly=Ly,
lc=lc, # characteristic length of the mesh
refinement_ratio=20, # how much to refine at the tip zone
dist_min=dist_min, # radius of tip zone
dist_max=dist_max # radius of the transition zone
)


To plot the mesh we use pyvista see:

import pyvista
import dolfinx.plot

if pyvista.OFF_SCREEN:
from pyvista.utilities.xvfb import start_xvfb
start_xvfb(wait=0.1)

transparent = False
figsize = 800
pyvista.rcParams["background"] = [0.5, 0.5, 0.5]

topology, cell_types = dolfinx.plot.create_vtk_topology(mesh, mesh.topology.dim)

grid = pyvista.UnstructuredGrid(topology, cell_types, mesh.geometry.x)

from pyvista.utilities.xvfb import start_xvfb
start_xvfb(wait=0.5)
plotter = pyvista.Plotter()
plotter.view_xy()
if not pyvista.OFF_SCREEN:
plotter.show() ## Finite element function space¶

We use here linear Lagrange triangle elements

element = ufl.VectorElement('Lagrange',mesh.ufl_cell(),degree=1,dim=2)
V = dolfinx.FunctionSpace(mesh, element)


## Dirichlet boundary conditions¶

We define below the functions to impose the Dirichlet boundary conditions.

In our case we want to

• block the vertical component $$u_1$$ of the displacement on the part of the bottom boundary without crack

• block the horizontal component $$u_0$$ on the right boundary

We first get the dofs we need to block through specific dolfinx functions.

The function locate_dofs_geometrical takes the dofs of the function space V.sub(comp) associated to the component comp. The syntax is not intuitive here.

def bottom_no_crack(x):

return np.logical_and(np.isclose(x, 0.0),
x > Lcrack)

def right(x):
return np.isclose(x, Lx)

V_x = V.sub(0).collapse()
V_y = V.sub(1).collapse()

blocked_dofs_bottom = dolfinx.fem.locate_dofs_geometrical((V.sub(1), V_y), bottom_no_crack)
blocked_dofs_right = dolfinx.fem.locate_dofs_geometrical((V.sub(0), V_x), right)


The following lines define the dolfinx.DirichletBC objects. We impose a zero displacement.

zero_uy = dolfinx.Function(V_y)
with zero_uy.vector.localForm() as bc_local:
bc_local.set(0.0)

zero_ux = dolfinx.Function(V_x)
with zero_ux.vector.localForm() as bc_local:
bc_local.set(0.0)

bc0 = dolfinx.DirichletBC(zero_uy, blocked_dofs_bottom, V.sub(1))
bc1 = dolfinx.DirichletBC(zero_ux, blocked_dofs_right, V.sub(0))
bcs = [bc0, bc1]


## Define the bulk and surface mesures¶

The bulk (dx) and surface (ds) measures are used by uflto write variational form with integral over the domain or the boundary, respectively. In this example the surface measure ds includes tags to specify Neumann bcs: ds(1) will mean the integral on the top boundary.

dx = ufl.Measure("dx",domain=mesh)
top_facets = dolfinx.mesh.locate_entities_boundary(mesh, 1, lambda x : np.isclose(x, Ly))
mt = dolfinx.mesh.MeshTags(mesh, 1, top_facets, 1)
ds = ufl.Measure("ds", subdomain_data=mt)


In Python, you can get help on the different functions with the folling syntax:

help(dolfinx.mesh.MeshTags)

Help on function MeshTags in module dolfinx.mesh:

MeshTags(mesh, dim, indices, values)


## Define the variational problem¶

We specify the problem to solve though the weak formulation written in the ufl syntax by giving the bilinear $$a(u,v)$$ and linear forms $$L(v)$$ in the weak formulation: find the trial function $$u$$ such that for all test function $$v$$ $$$a(u,v)=L(v)$$$ with

$a(u,v)=\int_{\Omega\setminus\Gamma}\sigma(\varepsilon(u))\cdot \varepsilon(v)\,\mathrm{d}x, \quad L(v)=\int_\Omega b\cdot v \,\mathrm{d}x + \int_{\partial_N\Omega} f\cdot v \,\mathrm{d}s$

ufl.inner(sigma(eps(u)), eps(v)) is an expression ufl.inner(sigma(eps(u)), eps(v)) * dx is a form

u = ufl.TrialFunction(V)
v = ufl.TestFunction(V)

E = 1.
nu = 0.3
mu = E / (2.0 * (1.0 + nu))
lmbda = E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))
# this is for plane-stress
lmbda = 2*mu*lmbda/(lmbda+2*mu)

def eps(u):
"""Strain"""

def sigma(eps):
"""Stress"""
return 2.0 * mu * eps + lmbda * ufl.tr(eps) * ufl.Identity(2)

def a(u,v):
"""The bilinear form of the weak formulation"""
k = 1.e+6
return ufl.inner(sigma(eps(u)), eps(v)) * dx

def L(v):
"""The linear form of the weak formulation"""
# Volume force
b = dolfinx.Constant(mesh,ufl.as_vector((0,0)))

# Surface force on the top
f = dolfinx.Constant(mesh,ufl.as_vector((0,0.1)))
return ufl.dot(b, v) * dx + ufl.dot(f, v) * ds(1)


## Define the linear problem and solve¶

We solve the problem using a direct solver. The class dolfinx.fem.LinearProblem assemble the stiffness matrix and load vector, apply the boundary conditions, and solve the linear system.

problem = dolfinx.fem.LinearProblem(a(u,v), L(v), bcs=bcs,
petsc_options={"ksp_type": "preonly", "pc_type": "lu"})
uh = problem.solve()
uh.name = "displacement"


## Postprocessing¶

We can easily calculate the potential energy

energy = dolfinx.fem.assemble_scalar(0.5 * a(uh, uh) - L(uh))
print(f"The potential energy is {energy:2.3e}")

The potential energy is -4.115e-03


We can save the results to a file, that we can open with paraview (https://www.paraview.org/)

from pathlib import Path

Path("output").mkdir(parents=True, exist_ok=True)
with dolfinx.io.XDMFFile(MPI.COMM_WORLD, "output/elasticity-demo.xdmf", "w") as file:
file.write_mesh(uh.function_space.mesh)
file.write_function(uh)


Let us plot the solution using pyvista, see

# Create plotter and pyvista grid
p = pyvista.Plotter(title="Deflection", window_size=[800, 800])
topology, cell_types = dolfinx.plot.create_vtk_topology(mesh, mesh.topology.dim)
grid = pyvista.UnstructuredGrid(topology, cell_types, mesh.geometry.x)

# Attach vector values to grid and warp grid by vector
vals_2D = uh.compute_point_values().real
vals = np.zeros((vals_2D.shape, 3))
vals[:,:2] = vals_2D
grid["u"] = vals 